Multiple FSK (MFSK)

- More than two frequencies (M frequencies) are used
- ☐ More bandwidth efficient compared to BFSK
- More susceptible to noise compared to BFSK
- ☐ MFSK signal:

$$s_i(t) = A\cos(2\pi f_i t), \qquad 1 \le i \le M$$
where

$$f_i = f_c + (2i-1-M)f_d$$

 $f_c = the \ carrier \ frequency$
 $f_d = the \ difference \ frequency$
 $M = number \ of \ different \ signal \ elements = 2^L$
 $L = number \ of \ bits \ per \ signal \ element$

Multiple FSK (MFSK)

■ MFSK signal:

$$s_i(t) = A\cos(2\pi f_i t), \qquad 1 \le i \le M$$
 where
$$f_i = f_c + (2i - 1 - M)f_d$$

$$M = number\ of\ different\ signal\ elements = 2^L$$

$$L = number\ of\ bits\ per\ signal\ element$$

Period of signal element

$$T_s = LT_b$$
, T_s : signal element period T_b : bit period

Minimum frequency separation

$$1/T_s = 2f_d$$
 \Rightarrow $1/(LT_b) = 2f_d$ \Rightarrow $1/T_b = 2Lf_d$ (bit rate)

☐ MFSK signal bandwidth:

$$W_d = M(2f_d) = 2Mf_d$$

Example

□ With f_c =250KHz, f_d =25KHz, and M=8 (L=3 bits), we have the following frequency assignment for each of the 8 possible 3-bit data combinations: $f_i = f_c + (2i - 1 - M)f_d$

$$\begin{array}{cccc}
000 & \rightarrow & f_1 = 75KHz \\
001 & \rightarrow & f_2 = 125KHz \\
010 & \rightarrow & f_3 = 175KHz \\
011 & \rightarrow & f_4 = 225KHz \\
100 & \rightarrow & f_5 = 275KHz \\
101 & \rightarrow & f_6 = 325KHz \\
110 & \rightarrow & f_7 = 375KHz \\
111 & \rightarrow & f_8 = 425KHz
\end{array}$$

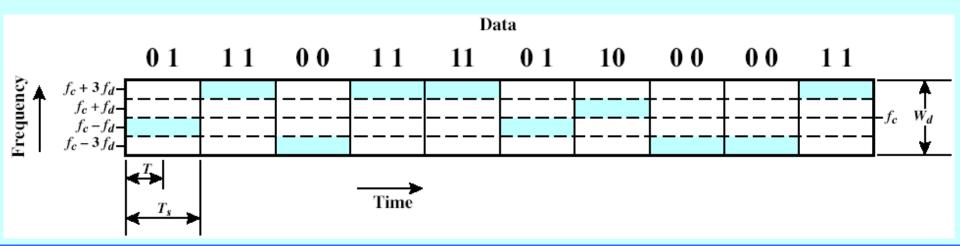
 $bandwidth = W_s = 2Mf_d = 400KHz$

☐ This scheme can support a data rate of:

$$1/T_b = 2Lf_d = 2(3bits)(25Hz) = 150Kbps$$

Example

☐ The following figure shows an example of MFSK with M=4. An input bit stream of 20 bits is encoded 2bits at a time, with each of the possible 2-bit combinations transmitted as a different frequency. $f_i = f_{i+1}(2i-1-M)f_{i+1}$


Uency.
$$f_i = f_c + (2i - 1 - M)f_d$$

$$00 \rightarrow i = 1 \rightarrow f_1 = f_c - 3f_d$$

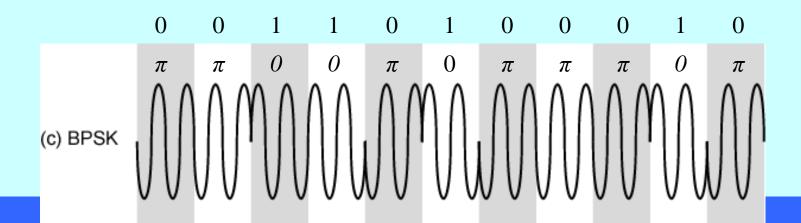
$$01 \rightarrow i = 2 \rightarrow f_2 = f_c - f_d$$

$$10 \rightarrow i = 3 \rightarrow f_3 = f_c + f_d$$

$$11 \rightarrow i = 4 \rightarrow f_4 = f_c + 3f_d$$

Phase Shift Keying (PSK)

☐ Phase of carrier signal is shifted to represent data


☐ Binary PSK (BPSK): two phases represent two

binary digits

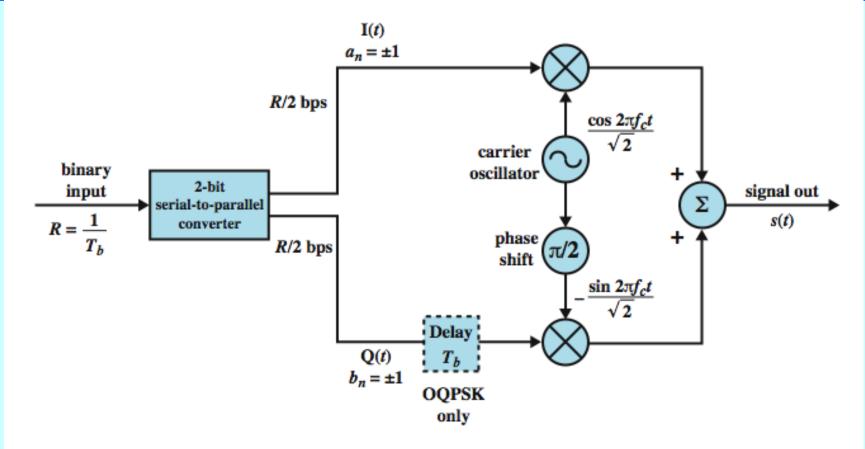
$$s(t) = \begin{cases} A\cos(2\pi f_c t), & binary 1 \\ A\cos(2\pi f_c t + \pi), & binary 0 \end{cases}$$


$$= \begin{cases} A\cos(2\pi f_c t), & binary 1 \\ -A\cos(2\pi f_c t), & binary 0 \end{cases}$$

$$= Ad(t)\cos(2\pi f_c t), & d(t) = \pm 1$$

Differential PSK (DPSK)

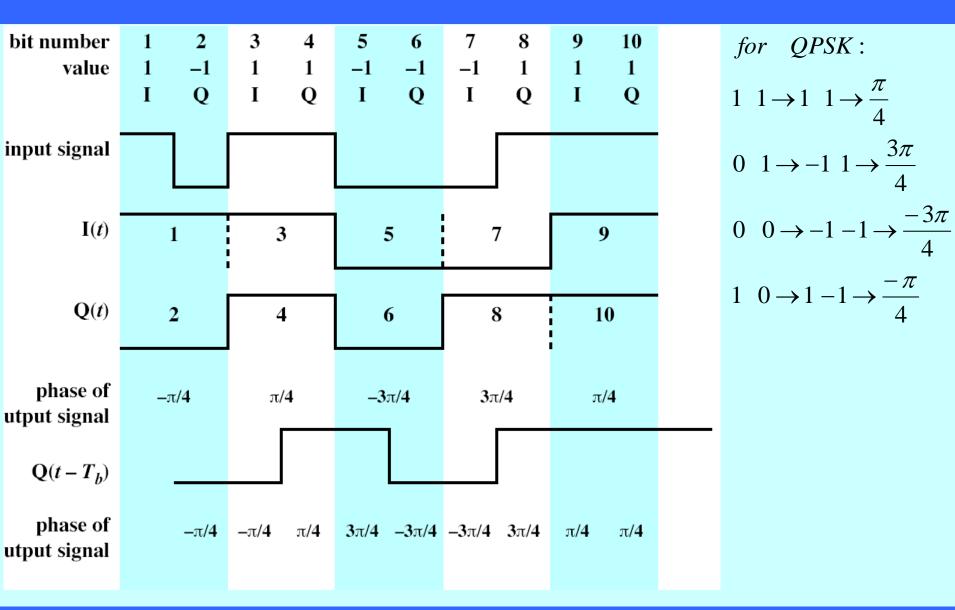
- ☐ In DPSK, the phase shift is with reference to the previous bit transmitted rather than to some constant reference signal
- ☐ Binary 0:signal burst with the same phase as the previous one
- Binary 1:signal burst of opposite phase to the preceding one


Four-level PSK: Quadrature PSK (QPSK)

- More efficient use of bandwidth if each signal element represents more than one bit
 - \triangleright eg. shifts of $\pi/2$ (90°)
 - each signal element represents two bits
 - > split input data stream in two & modulate onto the phase of the carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t + \frac{\pi}{4}) & \leftrightarrow 11 \\ A\cos(2\pi f_c t + \frac{3\pi}{4}) & \leftrightarrow 01 \\ A\cos(2\pi f_c t + \frac{3\pi}{4}) & \leftrightarrow 00 \\ A\cos(2\pi f_c t - \frac{\pi}{4}) & \leftrightarrow 10 \end{cases}$$

- can use 8 phase angles & more than one amplitude
 - 9600bps modem uses 12 phase angles, four of which have two amplitudes: this gives a total of 16 different signal elements

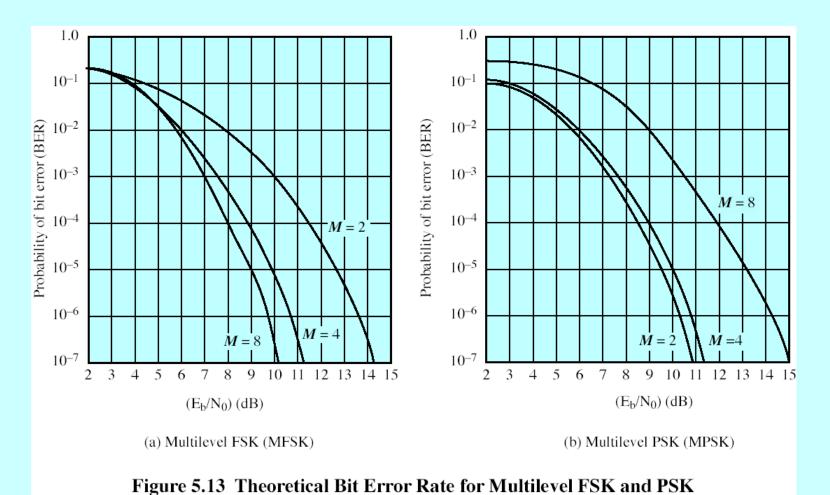

QPSK and Offset QPSK (OQPSK) Modulators

QPSK:
$$s(t) = \frac{1}{\sqrt{2}} I(t) \cos(2\pi f_c t) - \frac{1}{\sqrt{2}} Q(t) \sin(2\pi f_c t)$$

OQPSK:
$$s(t) = \frac{1}{\sqrt{2}}I(t)\cos(2\pi f_c t) - \frac{1}{\sqrt{2}}Q(t - T_b)\sin(2\pi f_c t)$$

Example of QPSK and OQPSK Waveforms

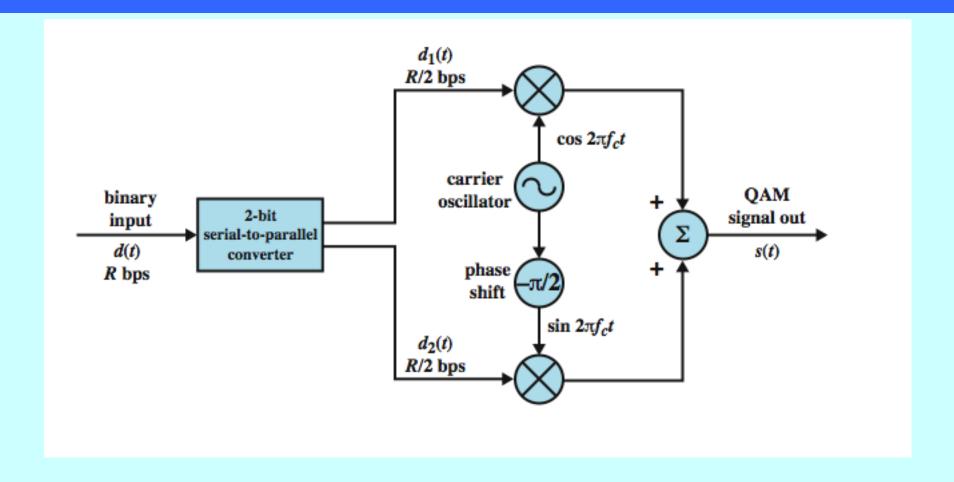
Performance of ASK, FSK, MFSK, PSK and MPSK


■ Bandwidth Efficiency

> ASK/PSK:
$$\frac{data\ rate}{transmission\ bandwidth} = \frac{R}{B_T} = \frac{1}{1+r},$$
 $0 < r < 1$

- ► MPSK: $\frac{R}{B_T} = \frac{\log_2 M}{1+r}$, M:number of different signal elements
- $ightharpoonup MFSK: \frac{R}{B_T} = \frac{\log_2 M}{(1+r)M}$
- ☐ Bit Error Rate (BER)
 - ➤ bit error rate of PSK and QPSK are about 3dB superior to ASK and FSK (see Fig. 5.4)
 - for MFSK & MPSK have tradeoff between bandwidth efficiency and error performance

Performance of MFSK and MPSK


- \blacksquare MFSK: increasing M decreases BER and decreases bandwidth Efficiency
- \square MPSK: Increasing M increases BER and increases bandwidth efficiency

Quadrature Amplitude Modulation (QAM)

- ■QAM used on asymmetric digital subscriber line (ADSL) and some wireless standards
- combination of ASK and PSK
- □ logical extension of QPSK
- send two different signals simultaneously on same carrier frequency
 - > use two copies of carrier, one shifted by 90°
 - each carrier is ASK modulated

QAM modulator

QAM:
$$s(t) = \underbrace{d_1(t)\cos(2\pi f_c t)}_{ASK} + \underbrace{d_2(t)\sin(2\pi f_c t)}_{ASK}$$

QAM Variants

- ☐ Two level ASK (two different amplitude levels)
 - > each of two streams in one of two states
 - four state system
 - > essentially QPSK
- ☐ Four level ASK (four different amplitude levels)
 - combined stream in one of 16 states
- ☐ Have 64 and 256 state systems
- ☐ Improved data rate for given bandwidth
 - but increased potential error rate